Reducing fuel use by improvements in efficiency provides environmental benefits and as well as net cost savings to the energy user. Building insulation, fluorescent lighting, and public transportation are some of the most effective means of conserving energy, and by extension, the environment. However, Jevons paradox poses a challenge to the goal of reducing overall energy use (and thus environmental impact) by energy conservation methods. Improved efficiency lowers cost, which in turn increases demand. To ensure that increases in efficiency actually reduces energy use, a tax must be imposed to remove any cost savings from improved efficiency.
Energy conservation is the practice of increasing the efficiency of use of energy in order to achieve higher useful output for the same energy consumption. This may result in increase of national security, personal security, financial capital, human comfort and environmental value. Individuals and organizations that are direct consumers of energy may want to conserve energy in order to reduce energy costs and promote environmental values. Industrial and commercial users may want to increase efficiency and maximize profit.
On a larger scale, energy conservation is an element of energy policy. The need to increase the available supply of energy (for example, through the creation of new power plants, or by the importation of more energy) is lessened if societal demand for energy can be reduced, or if growth in demand can be slowed. This makes energy conservation an important part of the debate over climate change and the replacement of non-renewable resources with renewable energy. Encouraging energy conservation among consumers is often advocated as a cheaper or more environmentally sensitive alternative to increased energy production.
Residential buildings, commercial buildings, and the transportation of people and freight use the majority of the energy consumed by the United States each year. Specifically, the industrial sector uses 38 percent of total energy, closely followed by the transportation sector at 28 percent, the residential sector at 19 percent, and the commercial sector at 16 percent. On a community level, transportation can account for 40 to 50 percent of total energy use, and residential buildings use another 20 to 30 percent.[14]
In developed nations, the way of life today is completely dependent on abundant supplies of energy. Energy is needed to heat, cool, and light homes, fuel cars, and power offices. Energy is also critical for manufacturing the products used every day, including the cement, concrete and bricks that shape our communities.[15]
While the U.S represents only five percent of the world's population, it consumes 25 percent of its energy and generates about 25 percent of its total greenhouse gas emissions. U.S. citizens, for example, use more energy per capita for transportation than do citizens of any other industrialized nations which in part, reflects the greater distances traveled by Americans compared with citizens of other nations.[16]
Urban planning also has an effect on energy use. Between 1982 and 1997, the amount of land consumed for urban development in the United States increased by 47 percent while the nation's population grew by only 17 percent.[17] Inefficient land use development practices have increased infrastructure costs as well as the amount of energy needed for transportation, community services, and buildings.
At the same time, a growing number of citizens and government officials have begun advocating a smarter approach to land use planning. These smart growth practices include compact community development, multiple transportation choices, mixed land uses, and practices to conserve green space. These programs offer environmental, economic, and quality-of-life benefits; and they also serve to reduce energy usage and greenhouse gas emissions.
Approaches such as New Urbanism and Transit-oriented development seek to reduce distances travelled, especially by private vehicles, encourage public transit and make walking and cycling more attractive options. This is achieved through medium-density, mixed-use planning and the concentration of housing within walking distance of town centers and transport nodes.
Smarter growth land use policies have both a direct and indirect effect on energy consuming behavior. For example, transportation energy usage, the number one user of petroleum fuels, could be significantly reduced through more compact and mixed use land development patterns, which in turn could be served by a greater variety of non-automotive based transportation choices.
Emissions from housing are substantial,[18] and government-supported energy efficiency programmes can make a difference.[19]
New buildings can be constructed using passive solar building design, low-energy building, or zero-energy building techniques, using renewable heat sources. Existing buildings can be made more efficient through the use of insulation, high-efficiency appliances (particularly hot water heaters and furnaces), double- or triple-glazed gas-filled windows, external window shades, and building orientation and siting. Renewable heat sources such as shallow geothermal and passive solar energy reduce the amount of greenhouse gasses emitted. In addition to designing buildings which are more energy efficient to heat, it is possible to design buildings that are more energy efficient to cool by using lighter-coloured, more reflective materials in the development of urban areas (e.g. by painting roofs white) and planting trees.[20][21] This saves energy because it cools buildings and reduces the urban heat island effect thus reducing the use of air conditioning.
Modern energy efficient technologies, such as plug-in hybrid electric vehicles, and development of new technologies, such as hydrogen cars, may reduce the consumption of petroleum and emissions of carbon dioxide.
A shift from air transport and truck transport to electric rail transport would reduce emissions significantly.[22][23]
Increased use of biofuels (such as biodiesel and biobutanol, that can be used in 100% concentration in today's diesel and gasoline engines) could also reduce emissions if produced environmentally efficiently, especially in conjunction with regular hybrids and plug-in hybrids.
For electric vehicles, the reduction of carbon emissions will improve further if the way the required electricity is generated is low-carbon (from renewable energy sources).
Effective urban planning to reduce sprawl would decrease Vehicle Miles Travelled (VMT), lowering emissions from transportation. Increased use of public transport can also reduce greenhouse gas emissions per passenger kilometer.